Understanding VAE and Normalizing Flows

Rongfan Li

Contents
1 Introduction
1.1 Preliminaries and Notations
1.2 Distribution of a Simple Transformation of a Random Value
1.3 Change of Variables
1.4 Visualizing of PDF o . e
2 VAEs
2.1 Autoencoder e e e
2.2 Reverse Kullback-Leibler Divergence and ELBO
2.3 Variational Autoencoder e
2.3.1 KLin ELBO e
2.3.2 Reconstruction error in ELBO o 0L
2.3.3 Numerical ELBO e
2.4 Assumptions in VAEo
2.5 What VAE learned? e

3 Normalizing Flows

4 Applications

4.1 Variational Inference L L L
4.1.1 Planar and Radial Flow
4.1.2 Inverse Autoregressive Flow,
4.1.3 Sylvester Normalizing Flow

4.2 Density Estimationo Lo
4.2.1 Non-linear Independent Components Estimation
4.2.2 Real-valued Non-Volume Preserving
4.2.3 Masked Autoregressive Flow o o

5 NF in Probabilistic Programming Languages

6 Recent Advances

6.1 Pixel Recurrent Neural Network
6.2 Wavenet e e e e e e
6.3 Glow e

7 Conclusion

13

14
14
16
17
19
19
19
20
20

21

21
21
22
22

22

8 Missing Flow 23

8.1 Challenges o o o e 23
8.2 Improvement L e e e e 24
8.3 todolist L 24

1 Introduction

Simple distributions (e.g., Gaussian) are often used as likelihood distributions. However, the true
distribution is often far from this simple distribution and this results in issues such as blurry recon-
structions in the case of images. Latent variable models such as VAEs often set the prior distribution
p(z) to a factorial multivariate Gaussian distribution. Such a simplistic assumption hampers the
model in multiple ways. For instance, this does not allow a multi-modal latent space distribu-
tion. Normalizing Flows allow transformation of samples from a simple distribution (subsequently
denoted by ¢g) to samples from a complex distribution by applying a series of invertible flows.

1.1 Preliminaries and Notations
e Uppercase X denotes a random variable
o Uppercase P(X) denotes the probability distribution over that variable

o Lowercase x ~ P(X) denotes a value x sampled (~) from the probability distribution P(X)
via some generative process.

o Lowercase p(X) is the density function of the distribution of X. It is a scalar function over
the measure space of X.

e p(X = z) (shorthand p(x)) denotes the density function evaluated at a particular value x.

o p(Z|X) is the posterior probability: ”"given the image, what is the probability that this is
of a cat?” If we can sample from z ~ P(Z|X), we can use this to make a cat classifier that
tells us whether a given image is a cat or not.

o p(X|Z) is the likelihood: "given a value of Z this computes how ”probable” this image X
is under that category (“is-a-cat” / ”is-not-a-cat”). If we can sample from = ~ P(X|Z), then
we generate images of cats and images of non-cats just as easily as we can generate random
numbers. Likelihood is just what generative models want.

o p(Z) is the prior probability. This captures any prior information we know about Z - for
example, if we think that 1/3 of all images in existence are of cats, then p(Z = 1) = 1/3 and
p(Z =0)=2/3.

1.2 Distribution of a Simple Transformation of a Random Value

Before jumping into normalizing flows, let’s consider a simple univariate distribution p(z) = 2z with

support = € [0,1]. Define a function y = f(x) = x2. Note that f(x) is monotonically increasing in

[0,1]. What is the PDF of the variable y? (see Probability density function wikipedia for details.)
First, we have some basic knowledges:

Fx(a)=P(X <a)= /:1 fx(x)dx

ety = 2

We can compute p(y) using the CDFs as follows.

https://zh.wikipedia.org/wiki/%E6%A9%9F%E7%8E%87%E5%AF%86%E5%BA%A6%E5%87%BD%E6%95%B8

Now, p(y) = Fy (y) = dﬂzi;\/y) where

Fx(v/5) = / Y pa)da (3)
o
=y

differentiating w.r.t. y we get %"1) = 1 which means that p(y) = U(0,1).

1.3 Change of Variables

See section 3 for arbitrary function situations and multivariate distributions.

The method described above can be extended to multivariate distributions ¢o(z) and smooth
invertible mappings f : R? = R%. Samples z ~ go(z) can be transformed using f to give y = f(z).
The PDF of y is given by

af 1
dy

det or (6)

det
¢ Oz

71(y) = qo(2) = qo(2)

where the second equality comes from the inverse-function theorem.

Rezende et. al. proposed two different families of invertible transformations: planar flow and
radial flow.

Improving inference, sampling, and density estimation in deep generative models (DGMs) are
important research problems. Simple distributions (e.g., Gaussian) are often used as likelihood
distributions in DGMs. However, the true distribution is often far from this simple distribution,
which results in issues such as blurry reconstructions in the case of images. Latent variable models,
such as VAEs, often set the variational posterior distribution ¢(z|x) to a factorial multivariate
Gaussian distribution. Such a simplistic assumption hampers the model in multiple ways. For
instance, this does not allow a multi-modal latent space distribution. Normalizing Flows allow
transformation of samples from a simple distribution into samples from a complex distribution,
whose density can be evaluated analytically, by applying a series of invertible transformations. In
this report, we discuss a number of recent works that introduce techniques for improved variational
inference and/or density estimation in deep generative models using normalizing flows.

1.4 Visualizing of PDF

Now, let’s compute y = f(z) and the density ¢;(y). Note that we not inverting f. Instead, we are
first setting a z and then plotting the density ¢;(y) at corresponding ys.

S

https://zh.wikipedia.org/wiki/%E5%8F%8D%E5%87%BD%E6%95%B0%E5%AE%9A%E7%90%86

D O W N

O W N

o O W N

MR BERUCR BREREC R, A au(y)dy, et sl nIii=e, Nk
Fx(a) — Fx(b) = P(b< X < a) = /b fx(@)dy (7)

4 ab ERBEEHIE, 4 [fx(2)de = (a—b) fx(a) = fx(a)da.

FETU I, FRA SR, SRR A R P AR, MR (L 7
WK 1, SRS IR (100 YhBE 20 YOAT 1 B 0.2 K2 —RERy, MR
1/5), AT RA R B R

G, LEEP IR, B R B TR, BRSO R RS, R
IS, RATTORBESIEREA MR, TSRO R 4
i

FEFFIA2EGI . B 1000000 A9 SJHBEHLAS . YERERK A0, FROASLSEA N
RRESRICRAEAIIE, RATGEIG ST, SRR EECERRRL, T Bk oy RiT,
FIE A A e, FhG R HA BRI .

Listing 1: Initialize the random variable

r = np.linspace(—3, 3, 1000)
z = np.array(np.meshgrid(r, r)).transpose(1, 2, 0)
z = np.reshape(z, [z.shape[0] * z.shape[l], —1])

randomly sample
z = np.random.normal(size=(int(1e6),2))

HEA M BEHILAL B A2 B2 e Rl 7011

Listing 2: Generate multivariate Gaussian distribution

def mvn_pdf(X, mu=np.array([[0, 0]]), sig=np.eye(2)):
sqrt_det_2pi_sig = np.sqrt(2 * np.pi * LA.det(sig)) # determinat
sig_inv = LA.inv(sig) # inversion
X = X[:, None, :] — mu[None, :,]
return np.exp(—np.matmul(np.matmul(X, np.expand_dims(sig_inv, 0)), (X.transpose(0, 2,
1)))/2)/sqrt_det_2pi_sig

1% PDF J5imi &, W1 a. hist2d Fl hexbin #RHE BRI, SRS, WIXT I {57 B 1 5 £ ik
UK, refference, H5— B map X, #irl ARG FIAEA, UL+ b, #Z % bin 24, &
HIBINPFR L B A 2L T« hexbin (RIS EUE M E, C ZRXSHEATRER . WHRAH PDF
TR, AP kR et . i S HERMYCREER, BAFRZERE C, Fhz B
WA

Listing 3: Draw multivariate Gaussian distribution

q0 = mvn_pdf(z)
plt .hexbin(z [:,0], z [:,1], C=q0.squeeze(), cmap="rainbow")
plt .gca() .set_aspect('equal ', adjustable ="box")

another way to plot
plt .hexbin(z [:,0], z [:,1], C=q0.squeeze(), cmap="rainbow’,bins="log")

https://zh.wikipedia.org/zh-hans/%E5%A4%9A%E5%85%83%E6%AD%A3%E6%80%81%E5%88%86%E5%B8%83
https://zhuanlan.zhihu.com/p/81379138

SwWw N

(a) Initial Density (b) Initial Density Variant (c) Planar Flow

(d) Initial Density (e) Planar Flow

Figure 1: Change in standard normal density on application of length 1 planar and radial flows.

dot 22| JTEAT AR E] ql MOMEREIIEIS , AR EL AT o

Al a(y) = qo(z)
TR

Listing 4: Draw transformed distribution

ql = q0.squeeze()/det_J(z).squeeze()

y = f(2)

plt .hexbin(y [:,0], vy [:,1], C=ql.squeeze(), cmap="rainbow")
plt .gca().set_aspect('equal ', adjustable ="box’)

2 VAEs

2.1 Autoencoder

An Autoencoder (AE) [5] is comprised of two neural networks:
Encoder The encoder network fy which transforms an input data-point x € R? into a representa-
tion z € RP where p < d generally.
Decoder The decoder network gg which attempts to reconstruct x as X € R? from the representation
z.

Training proceeds by minimizing the reconstruction error between x and X and the training

objective is given in Eq. (8)

¢,0 = arg min L(X, x) (8)

®,0
where £ is a suitable reconstruction error which can be the squared error ||X — x||2 for real-valued
observations or binary cross-entropy Z?:l —x|; log(X|;) — (1 —x];) log(1—X]|;) for binary observations.

2.2 Reverse Kullback-Leibler Divergence and ELBO

We usually have Reverse Kullback-Leibler Divergence to measure the distance between two distri-
butions. We wish to minimize this quantity with respect to ¢. Note that, minimizing K L(Q||P) is
to disort @ to approximate P, and it has a contrary meaning to optimal a reverse form with respect
to forward form.

KL(Qs(Z|X)||P(Z)X)) :/ »(2 |m)10g 4o (2|)dz Continuous form (9)

p(z]z)
KLQu(Z1X)|IP(Z1X)) = Y gs(z]z) log L <(|| >)
z€Z

Discrete form (10)

It is crucial that KL divergence can be written as expectation form, so that we can use Monte
Carlo EM algorithm to sample from the posterior.

There is still some chaos in the use of [and), but it does not disturb the deriva-
tion.

By definition of a conditional distribution, p(z|z) = £ 1(7?5)’ we substitute this expression into
our original KL expression, and then distribute:

KLIQIP) = 3 as(2Ja) log 2205 1)

z€Z
Z q4(z|z)(log ?((Zf)) + log p(x))

z€Z ’

(Zq z|z) log (;(b(izf))) + (Zlogp(x)%(zlx)>

(Zq z|z) log jj((zz,f))) (logp Z% |x> note: Zq(z) =

= log p(x (Z% z|z) log ((e)))

To minimize KL with respect to variational parameters ¢, we just have to minimize the second

part > qe(z|z)log q}j’((jf)), since log p(x) is fixed with respect to ¢. See expectation for details of

how to compute expectation of a random variable.

https://zh.wikipedia.org/wiki/%E7%9B%B8%E5%AF%B9%E7%86%B5
https://zh.wikipedia.org/wiki/%E6%9C%9F%E6%9C%9B%E5%80%BC

qo(2 Iw)]

p(z,x)

qe(2|7)
log 225 _m_ 1
E 44 (z|z) log (2.2) Qe (21X) [og 2 o

= Eq[loggy(2|z) — logp(z, 2)] (12)
=Eq[log gy (z|z) — (log p(z|2) + log(p(2)))]
= Eq [log gy (z|x) — log p(z|z) — log(p(2)))]

And minimizing it is equivalent to maximizing the negation of this function:

q4(z|7)
maximize Lr.po = XZ:% z|z) log =——— (2. 7)
Eq[— log gy (z[z) + logp(z|2) + log(p(2)))] (13)
p(z)]
ay(2|z)
L is known as the evidence lower bound (ELBO), and is computationally tractable if we can

evaluate p(z|z),p(z), ¢(z|x). We can further re-arrange terms in a way that yields an intuitive
formula:

=Eq[logp(z|z) + log

p(2)
L =Eqg|logp(z|z) + log
ollomplalz) +lo8 g Ty
=Eq [1ogp(x\ + Z g4 (z|x) log ——— p(z) Definition of expectation
a4 (z|@)
Q (14)
= Eq|[logp(z|2) Zq (z|x) log ((z|)x)
z

=Eq[logp(z|z)] — KL((Z|X)||P(2)) Definition of KL divergence

BT, RAE Q(Z|X) M, K% p ﬁ’%ﬁﬁéﬂiﬁ EDE encoder AR, decoder %2
R RE Sy 3458, X {§i15 encoder i decoder Bifitér. 451, 7F Q(Z|X) BHN Z W4
BIREAMIERM Z REF—E B A noise T, x @J EIEI@J x, AR z A noise MY
N, EHEM L I —25.

Now back to (11), we substitute the complicated expressions with ELBO.

KL(Q[[P) = logp(z) - L
L =logp(x) — KL(Q[|P) (15)
wrt L£=Egq[logp(z|z)] - KL(Q(Z|X)||P(Z))

In (15), p(zx), the log-likelihood of a data point under the true distribution, equals £ + KL,
and the KL term can be treat as an error that capture the distance between) and P. Since
KL(Q||P) > 0, logp(xz) > L, which means £ is the evidence lower bound of logp(z). X H.AY
likelihood s, AHfAJH XA p(v) 13X v HIPMERER, HILX B2 p(x|0), B
KAk likelihood Flf KAk ELBO 254/,

Note that L itself contains a KL divergence term between the approximate posterior and the
prior, so there are two KL terms in total in logp(x).

2.3 Variational Autoencoder

HE VAE X EEFFS5RH TR, RESEMEM T boldsymbol,

The Variational Autoencoder (VAE) [8] combines an inference network f, (analogous to the
encoder in AE) with a generative model gy (analogous to the decoder in AE). There is a complete
introduction to VAE in Chinese by Jianlin Su.

In short, VAE wants to optimize the parameters so that our proposed posterior ¢4 (an easy,
parametric distribution Q4(Z|X), like a Gaussian, for which we know how to do posterior inference)
can approximate the true posterior p.

Recall (15), VAE maximizes the ELBO £ = Eq|[logp(z|z)] — KL(Q(Z|X)||P(Z)) to get the
approximation of the true posterior. The first part is reconstruction error of decoder(generative
model), and the second is error of encoder(inference model).

2.3.1 KL in ELBO

1E VAE 1, {Ri% prior pe(z) = N (z;0 I) 2T, p MSEUEARIT, HIGX g A#
ToHTE, ROIEZEEE posterior AU . 4 po(x|z) B2 —PZICmBia, ,\/fﬁmLL—A MLP
B H ¥ . True posterior pg(z|x) is intractable in this case. S8)G FATE MM, T H—A
2 Il [) e 97 43 11 R approximate posterior:

log ¢ (z]x) = log N (z; u'¥, 02V1) (16

N ABEYURFEZ TR B, Irod, FREA ES kTS (reparameterization trick), fifift
W PAMG 36 7] 280 . We sample from the posterior z(4!) ~ qe(2z z|x()) using 9o (x(), (l)) =
p + 0@ o e® where € ~ N(0,1), p® and ¢® are outputs of the encoder, i.e. nonlinear
functions of inputs x(¥ and variational parameters ¢, ® is element-wise productc Horp, pw® F
o) #JE encoder ki, X4~ encoder I MLP HRSEH, M AMEARM xO, 402 ¢ NI]
FRAVEFEN T qo(2[xD) HREE, M ZHIWHX A posterior EERIEE AT po(z) = N (2;0,1).

NS T IE S RO .

=

m

KL (N(u, (72)HN<0, 1))
r— 202 /
e—(w—u)2/2a2 <log ") i / 27T02>

1
Vamo? N

1 1
e—(m—u)Z/Qaz log { \/0-72 exp {2 [1‘2 o (.%‘ . M)2/0_2} }} dz
—n)?/20% [_ 10g02 2 (z — M)2/0_2]dz

1
B / \V2ro?
V2ro? ¢
%‘/\Qt%/\jﬂ#mfﬂ/ ST bR Latie —logo? MR (Bt 1), FrAgsi

loga S IﬁkaTmEuﬁj\ﬁEl’J B, BGRIES 0 B A R AZ AR R IE S B
ﬁu + 0?5 MAEE X, =Tk bR R =17, FrABSiAte

KL(N(,LL,JQ)HN(O, 1)) - —%(logUQ 2o+ 1) (18)

https://spaces.ac.cn/archives/5253

Wt L TCR AT, Hd j &2 j-th element of these vectors of input x().

;§:<LH%((“Q)-@P)3-@y§3 (19)

j=1

AR, ATAZ L2 posterior ;2 IERT, XFEA T HESEACFIRAE, T prior {&
BENIESA R L2 4. HAKL prior TU\TfouﬁEIEu/\?ﬁ HE KL Binl, SOEARRER M
Mrigisk, W, posterior g &i@iT prior, Joi prior 214, %B/Eiﬁ Wb se 4l & .

T2 ITCIES) KL 8K (FF5 AHNE) K J 24880

DKLuxzmp@a>:u/ (2) log Eidz

q(2){log q(z) — log p(2)}dz

/
- /q(z) 1ogq(z)dz—/q(Z) log p(z)dz

J
——1og (2m) —72 log01]+1 } (20)
j=1

J J 1 J 0’% Hl — 1o ')2
—= 10g(27r - = Zlog%] 3 Z [4 W]
- 2

3_1 j=1 UQJ

J 2 2
_ 712 log L TLi (g — pi2y)? +1
2 852 T 52 o2 .

j=1 2,J 2,j 2,J

2.3.2 Reconstruction error in ELBO
ELBO il —I0, W2 E.ug,(2a) [logp(x]2)], ATPARSERF RIS, T, LRI
2] PAf53 samples from the posterior z(#!) ~ q¢(z|x(i)) T,

— RGO, S RIEE T A B R B

_#Eﬁﬁ%ﬁ%ﬁiﬁm,%%%ﬁ%@%%oﬂﬁﬁL¢%M%ﬁ,é”NNWD,imT
200, 530K 8 R, FUIE x 9 minibatch M B3R, TS REERGHECR L aTDAIR L,

L
E, gy (a1x) [log p((x® |z)] ~ Z 0gpe(xV|2V) where 24D ~ gy (2[x?) (22)

po(xV|z20D) B—AHERB AL, t decoder & Y. XH VAE 4 TR, —N2A%
Mo, —ARIESE, WEPRAZEHINE. A T numerical form, A DAFA#IZ IS SEL,
W f(z) 6(z), D B4E%L.

10

p(z]z) = 19[2;&2 5 exp (‘é x;<§§Z))
k=1 (k (23)
k=1

2.3.3 Numerical ELBO

AHE
L(6,$;x") = Eq[logp(z|2)] — KL(Q(Z|X)||P(Z))
B S €1 O e AN NP
_L; (2 (2) ham g le))) (24)
J

+ % > (1 +log () Mg?))z - (a§“)2>
)

WERINH o RHFE (LR —RWAEIE), IAAIE—L ik

an— NP+ ;(Hlog((o;”f)—(u§i>)2—(o§”)2) (25)

BT g R B4~ MSE, 5E4HE L T—/ reconstruction error, X4~ = e AR =@, HJ
TEABRE o WA, BATHRTE MR 4 BT BB T DABRRRL, il A B 1
M7, W p FrERH Ty, il o MR ER LA o BB,

KL LSRRI PASERLA, M4 F fe/IME reconstruction error, g KALEE — . B HiEH
B, AT ARV R, S

Loss = —L (26)

2.4 Assumptions in VAE

VAEs B & 8RUR 8] BIAZ 9, Bkl 16, AR E “In this case, we can let the variational

approximate posterior be a multivariate Gaussian with a diagonal covariance structure. Note that

this is just a (simplifying) choice, and not a limitation of our method. ” (Z% £ UL/ wiki).
VAE g2, %ﬁ%*ﬁﬁ_ﬂimng,uﬁ?ﬁ , RT3 A F) 158 B AR R I Jrg R

L Bes s (A AE & 2z FF ARSI, TR A AR Y
2. z WA RIS AT

X BB S F 2 normalizing flow 1 %32 4k . NF can modify the simple normal distribution into a
richer posterior that can better model the true posterior.

VAE ifMRiE T prior 22 TG HEIERS 01 (centered isotropic multivariate Gaussian. Isotropic
means its covariance matrix is represented by ¥ = ¢?I and all dimensions are independent and the

11

https://zh.wikipedia.org/wiki/%E5%A4%9A%E5%85%83%E6%AD%A3%E6%80%81%E5%88%86%E5%B8%83

O W N

variance is the same.), MIMITEH T KL §F. (HEXAMMBEEH AT, [H4 prior fEHZICIE
Shfieair, 2T0E, fMLmEY, SFABERER, (125 posterior KAifll prior AT
FARE R o

)5 VAE 8% po(xV|20:0) JRIEZ M BT WA-A T AR BIES 7, B R A w7
i FE— BT, 2010 p(z) WAHAGBIERER &R AR P(x) =Y, p(2)p(z]2),
M BIRAMRBEX N M R BT, SERZ NG, Hie L o 197 v] PASE &8> 5.

2.5 What VAE learned?

Fig 2a and fig 2b shows the latent space of VAE somehow. We use encoder to encode an image,
and get it’s exclusive p and . Then we have two different methods to add bias.

Normal distribution. Sample € from normal distribution, combine with p and o, then we get
the result that VAE would get. As fig 2a shows, the numbers keep it’s shape among biases, which
seem like 7 or 9. Therefore, FAJHIIE, encoder B] PATRHENT N B BIN N BIBR G0 RIS 5L, FixX
AR A1 R AR R 20 1) [TE R 256 AR AL«

Linear spaced sequence. We generated some bias, which does not obbey any distribution but
consist of a linear spaced sequence, which from -3 to 3. Fj—f =4 WKM7 5-dimension, and
we add 3 of which with the sequence like the code shows. As fig 2b shows, Xfh =4 M5
R, TR 3 AR ERERT THEORRR R, AUAERIRAS , AR AT 1 3] 4 59 F
7 B 7 FAE. ATDAE Y, AE latent space, ZA% AN [4E L AR G A1 SR AR Y 14
T, FH HiX PS4 B BOE R B S, Jl LB MO i SR 864 TR WAL .

sample_d = 3

b = tf. linspace (—3., 3., 256)

bias = tf.reshape(a, [256, 1])

bias = tf. tile (bias, [1, sample_d])

epsilon_prime = tf.concat([z [;, :sample_d]+bias, z[:, sample_d:]], axis=1)

QA

B EUES NN

ANRVVVIRVWIVNRRI 2
D RVVNNVRVIVNQAQAANNAND

N N_VINDAQAAIINVNNRRAND
QUNNNR e NN .~
PN PR RN N

/
/
/
q
§
7
7
7
-

IJVVINVNSNN~~~

777777777717

NNV RVANVQANN
NAVNNQARAINAIVNNNDN

4 9% %9

7
7
a
7
¢
7
7
7
7
7
7
7
7
1
i

RNV AVVVVAINNNDR
VWV AVVAVNQVARAND
AV DAINVIVNIT A2

N QA JAVINIIAINNN2AN
NNAJINNADIIINIQRDAN
R VANV IVNQRAANN/ANNN

7
T
9
7
7
9
7
1
7
7
N7
7
7
7
N7
7

N NVJANNRNW2

N =)

Random epsilon (b) Add sequence bias

—
NS

a

A WAV, VAE 22> B T AR R — 407 7 WU EI RS (51> 2 4EZ50)
dr, FFHICIRECY 7 RRARI s, MRS SRIE L, A fig 2o M BUE SR T MR MR
Y 7, WEe TR o (RS p R e, MRREK), B VAE 225] 2 T Ak
A BB s I A . HER, XS @HESERY, 7 AUERI— ISl PRI BL, e b7
B AAFAER) o AR D AAER R » AR E S, WX = WD), A2 Bolioe 4
T Z oA A, AR I Pl AR

APAERAS R, WRAE p BIRTERAE, ARARRIMZ A ER o MFEAECT .

12

3 Normalizing Flows

Before defining normalizing flows, let’s consider a univariate distribution with density function p(x).
Define a continuous, differentiable, and increasing function f. Define y = f(z) where & ~ p(x).
Recall 1.2 and the density function of the random variable Y can then be derived analytically using
the Cumulative Distribution Function (CDF) as follows.

Fy (y)

P(Y <y)
P(f(X) <y) (27)
P(X < f ' y) = Fx(f'(y))

And when f is decreasing, Fy (y) = P(X > f~1(y)).
We end up with the CDF of the random variable X at the point f~!(y). Now, p(y) = F}-(y) by
definition, where

b ()
Fe() = Fx(f W)= [playis (28)
— 00
Differentiating Eq. (28) with respect to y (using the Fundamental Theorem of Calculus given
F(z) = [f(t)dt then F'(z) = f(z) and the chain rule) we get PDF of Y

_ dFy(y)
dff;(y)p(m)dx
D ma—
() e —1
d d
= f_oo (WD) Substitute z (29)
dy
ALY W) W))
df=(y) dy
_ df
_ 10,0 .
o)L
When f is a decreasing function, we get q(y) = —p(f~1(y)) - %. For an invertible function in

general, which don’t need to be monotone, Eq. (29) can be written as

—1
i) =t)| L

(30)

Eq. (30) can be extended to the multivariate case where the derivative is replaced by the deter-
minant of the Jacobian matrix

-1 -1

_of
af~(y)

of

a1 s
=) e 5

det
Jy ¢

- |det

(31)

=p(f' ()

13

https://zh.wikipedia.org/wiki/%E5%BE%AE%E7%A7%AF%E5%88%86%E5%9F%BA%E6%9C%AC%E5%AE%9A%E7%90%86

= s faer 5L

det ox

p(x) =q(y) -

(32)

In the above equation, the second equality comes from the inverse function theorem. Successive
applications of such smooth, invertible transformation on a random variable with known density is
called a normalizing flow.

Computation of the probability density of the transformed random variable requires the com-
putation of the determinant of the Jacobian matrix which is computationally expensive
as it scales with O(d®) where d is the dimensionality of the random variable. Developing transfor-
mations with cheap determinant computation has been the primary focus of many recent works.

B y ~ q(y) and = ~ N(0,1), FFHARE THVAY 2 = f~(y) and y = f(x). WRHR
FERR AR s FR.

WRARGE ys ~ q(y), MFEEMARMEIES FRIE 25, RIG vs = f(zs) Nz By, EEF—
A RS FAE AR, forward.

WA —HE s, ,u\itﬂljﬂ”l?l’ﬂfﬁfﬁﬁﬁf“ (Hean® WY, AR sIn y, il mss AR v &
%ﬂ%_‘ﬁ'_ﬁth q MIBAR) , WIFE 2, = [(ys), RIEMHE] N(z,) , HfEH logq(ys) = log N () —
log | det 3L| KA q(ys). BATIFEHRRN inverse,

4 Applications

Literature on normalizing flows can be broadly classified into two parts: ones using normalizing

flows for improved variational inference and ones using normalizing flows for density estimation.
WE DA T B EE R 1-dimension), HFETEE 1-dimension {Hi2 2 multivariate {47

BpwT, EPBENLAE SR V e RY, (HRE4 VAR T NRE S, oA P2 R/ MR Z x € R,

4.1 Variational Inference

Variational methods perform inference by approximating the true posterior p(z|x) using a simpler
variational family ¢4 (z|x). Recent works have focused on improving the variational posterior used in
the VAE which is generally set to a multivariate normal distribution with diagonal covariance matrix
N (p,02T). It is clear that such a simplistic, unimodal choice for the posterior can be arbitrarily far
away from the true posterior which can be a complex multi-modal distribution.

Recent works seek to convert samples from a simple variational posterior (such as the multi-
variate normal distribution) into a richer distribution by applying a series of smooth, invertible
transformations or a flow. Let zy be a sample from a simple distribution go(zo) and zx be a sample
obtained by applying a flow of length K on z, i.e., zx = fix o fxk—1 00 f1(20). Using Eq. (32),
the density function ¢k (zx) is given by

K o7
%
ar (zx) = qo(zo0) U det D2
) (33)
log gk (zx) = log qo(2o) Zlog det 8 —

The variational lower bound in VAEs (Eq. 13) can now be modified by setting gq(z|x) =
qr (25 [x)

14

£=E,,[log L]

= Eyx (2 l0g p(X, 21) — log qrc (2 [%)]
= By (0 x) l0g (X, 2K) — log g (2 |x)]

(34)

where go(2zo|x) is the simple initial density. Note the change of the density of expectation. Plugging
in Eq. (33) into Eq. (34), we get a modified bound for flow-based VAEs

r K
0
L = Egy(z)x) [logp(x,2x) — logqo(zo[x) + Z log |det 3Z;{: 1

= qu(zo|x) log + Zlog det a 2h_1]

Afr

det
¢ 07,1

_ [p(X, ZK)
= EQO(ZMX) _IOg qo(z0|x):| + qu(z0|x) lz log

[p(x|zx)p(z
B LI I [Zlogmeﬂ]

qo(zox)

] first term is similar to (13)

(35)

K
q0(2o0[x)
= qu(z0|x) [logp(x|zK)] -]qu(zn|x) |:10g :| + qu(zn|x) Z 10g |det|
p(zx) k=1

K
= Eqy (fx) [log p(x|zx)] = K L(go(20[%)[[P(25)) + Egy (a0 [Z log detl]
k=1

BCE R ECRI I 732k, WL (14)

qK(ZKIX)] qK(ZK\X)]
" p(zx) p(zx)

= Z(Jo log QK((ZI;)X) = Z(Io(loqu —logp)
=" qo(log qo(zo|x) — Zlog
= _wlo le Zqozlog

= KL(qo(20[%)[Ip(zK)) — Eqgo(aa) [Z log detl]
k=1

KL(Q(zx[¥)[|P(zx)) = Eqy [log = Eq, [log

det

‘ log p)

det

8Zk 1

Now, given the bound, our attention shold be paid to the computation of the determinant.

15

4.1.1 Planar and Radial Flow

Planar and Radial Flows [12] are one of the earliest flows proposed in the context of variational
inference. Planar flows apply transformations perpendicular to a plane while radial flows apply
them around a point.

Planar flows use functions of the form

f(z) =z +uh(w'z+b) (37)

where u,w € R%, both are column vectors, b € R, and h is an element-wise non-linearity such
as tanh. Therefore, h is a scalar and f is a column vector of z shape. During the computation of
derivative, we keep the result of numerator layout. Refer to matrix calculus for help.

J0f(z) 0Oz Ouh

oz 0z = 0Oz
:I—I—h%—i—u% :I—l—u%
:Hu%’;% _1+ug’y‘3<wgzz+b> 8)
T
:I—i—uh'(a‘gzz—i—%)
=I+uh'w'

=I+u(h(w'z+ b)w)T

which can be computed in O(d) time. Temporal variable y = w ' z+b is used for simplify the process.
Mark h'(w'z + b)w as ¢(z). The Jacobian determinant is then given by
0
| det %\ =|det (I+up(z)")| = |1 +u"(z)|
note, for any uv, det (I + uvT) =1+ulv

(39)

Recall (33), with (39) we now have a quick method to compute the ELBO.
FESLE T, SHIVIE AR B2 %1 HE . seed=2,3 TEIESERL u_ 210NN, TRIAIL N
L BRI DA

Radial flows use functions of the form
f(z) =2+ Bh(a,r)(z — 20) (40)
where o € R, B € R, h(a,7) = (a+7)"! and r = ||z — 20]|.

The Jacobian determinant is then given by

0
et 220 (14 (o,) 1+ B) + R (] (a1)
Detailed computation is shown below. But not all functions of the form (37) or (40) will be
invertible. [12] discuss the conditions for invertibility and how to satisfy them in a numerically
stable way in the appendix. When using h(z) = tanh(z), a sufficient condition for f(z) in (37) to
be invertible is that w'Tu > —1.

16

https://en.wikipedia.org/wiki/Matrix_calculus#Vector-by-vector
https://github.com/casperkaae/parmesan/issues/22
https://github.com/kamenbliznashki/normalizing_flows

S B
I T B B

(a) Initial Density (b) Planar Flow (c) Radial Flow

Figure 2: Change in standard normal density on application of length 1 planar and radial flows.

Fig. 2 shows how planar and radial flows change a standard normal density.

8](;(;) =1+7 ((z —1z0) W (v, r)% + h(a, r)I>

=) 2

= (1+ Bh(a, 7))L+ B (a, 1) (z — 20) ET0)

[z — 2ol

Let v = (1 + Sh(a,)). Using the matrix determinant lemma
0f(z) _ / (2—20)" 1
det oz = (1 + ,Bh (Oé,r) ||Z — ZOH ; (Z - ZO)) det(yI)

(43)

(14 Bh(anr) + B (,r) 2 — o o
_(S)(1+Bh()

= (1+ Bh(a,r) + Bh (a,r)r) (1 + Bh(a, 7)) "
todo, FIEIAFER check 137 .

4.1.2 Inverse Autoregressive Flow

Planar and radial flows provide a simple invertible transformation shown to be effective in a low-
dimensional latent spaces (up to hundred dimensions). The transformation in planar flows (Eq. 37)
can be seen as a Multilayer Perceptron (MLP) with a single-unit bottleneck hidden layer with a skip
connection. Since a single-unit hidden layer isn’t very expressive, a long chain of transformations is
needed to model a high-dimensional distribution.

Autoregressive flows [4] is a normalizing flow that scales to high-dimensional latent space by
exploiting the ordering f the variables. In autoregressive flow, given a sequence of variable y = y;2
each variable is only dependent only on variables from the previous index. The distribution is then
given by

D

p(y) = [[p(xilzo, ... wi1) (44)

=0

17

Kingma et. al. [7] proposed a Gaussian version of an autoregressive flow on a noise vector
e ~ N(0,1) given as follow:
Yo = Mo + 0o€o (45)
Yi = 1i(yo:i—1) + 0(yo:i—1)ei (46)
This flow is invertible and the noise € is given by:
Yi — pi(yo:i-1)
o(y0:i-1)

Note that, epsilon is independent to each other so the calculation of Equation 47 can be vec-
torized as follow:

€; =

(47)

€="——" (48)

This enables an efficient computation with GPU.

Due to the autoregressive structure, the transformation has a lower triangular Jacobian where
diagonal is o;. For calculation of normalizing flows, we are interested in log-determinant of the
Jacobian which is just a product of the diagonal given as:

de
log det | —
oged

= Z —logao;(y) (49)

‘ D
=0

To apply Inverse Autoregressive Flows (IAF) for variational inference in VAE, we add IAF
transforms after the latent variables z and modify the likelihood to account for IAF transforms.
Figure 3 shows the process of applying IAF to Variational Autoencoder.

Approximate Posterior with Inverse Autoregressive Flow (IAF)
Encoder NN —OII}""'

|x—.+_-——-|T}—- | e | 2]

IAF Step

IAF
step

Figure 3: The process of Inverse Autoregressive Flows in Variational Autoencoder [7].

The flow consists of a chain of T" following transformations:
=M+ 0121 (50)
Kingma et.al. [7] proposed a more stable update based on LSTM-type update. LSTM is a type
of recurrent neural network that applies autoregressive technique to the neural network. The update
is given as follows:

St = l/O't and m; = *‘LLt/O't and Ot = and Zy = O¢Zp—1 + (]. - O't)mt (51)

1+e7s¢

where p and o learnt from an Autoregressive neural network given in [4] receiving input z and
h from the VAE.

18

4.1.3 Sylvester Normalizing Flow

As explained earlier, planar flows suffer from the single-unit bottleneck problem. Sylvester Nor-
malizing Flows (SNF) [13] attempt to solve this problem by modifying the transformation function
which then behaves as an MLP with M units instead of 1. SNF uses a transformation function of
the following form

f(z) =z+ Ah(Bz +b) (52)

where A € R™>™™ B € R™*? b € R™ with m < d, and h is an element-wise non-linearity such as
tanh. Using Sylvester’s determinant identity, we can convert the computation of the determinant
of a d x d matrix into the computation of the determinant of an m x m matrix.

det(I; + AB) = det(I,, + BA) (53)

Matrices A and B are further parameterized as A = QR and B = RQT where R and R are m x m
upper-triangular matrices and Q is d x m matrix with orthonormal column vectors. The determinant
of the Jacobian can then be written as

of(2)
0z

which can be computed in O(m) time. Please refer to the original paper [13] for details.

= det (I,,, + diag (h'(RQ 'z + b)) RR) (54)

4.2 Density Estimation

Density Estimation techniques take a different approach from Variational Inference (VI) methods
to model the complex data distribution. Unlike VI, these methods aim for exact inference, sampling
and log-likelihood evaluation. The primary goal in this regime is to find a bijective function h =
f(z) ,x € X to map complex data-distribution px(z) to density py(f(z)). Given that py() has
a simpler density whose likelihood function is analytically known, the overall log-likelihood of the
data can be easily calculated. The complex log-likelihood of the data can now be calculated using
the change of variables as follows:

0f(x)

det
¢ ox

logpx (z) =logpu (f(z)) + log (55)

4.2.1 Non-linear Independent Components Estimation

Non-linear Independent Components Estimation (NICE) [2] is one of the early works adopting
normalizing flows in density estimation. This work focuses on transformations h = f(z) that maps
the data into a factorized distribution, i.e., the components of hy are independent. Consequently,
the log-likelihood in eq. (55) can be written as:

0f (x)

det o

+ log

D
log(px (2)) = lz log pr, (fa(x)) (56)
d=1

where f(z) = (fa(z))a<p.

This work targets invertible functions whose Jacobians have triangular structure so that calcu-
lating the determinant is tractable. In particular, it proposes the family of coupling layers that we
define below.

19

Coupling layer: The coupling layer serves a building block of the transformation proposed in
this work. The general coupling layer comprises of two partitions Iy, Is of the input dimensions
[1, D], such that d = |I;|. The transformation is then defined as:

Y, =7 (57)
yr, = g(x1,;m(zr,)) (58)

where g : RP=4 x m(R%) — RP~4 is an invertible function. Considering I; = [1,d] and I = [d, D],
the Jacobian of this function is:

o 1, 0

gy = [8;;12 ByIZ]

8x 8&711 8I12

Where 1 is the identity matrix of size d. That means that det % = det gi?
2

The inverse of this transformation can be expressed as x7, = y;, and 7, = ¢~ (yr,; m(yr,)):

It is important to notice that the inverse of coupling function m(.) is not required, thus allowing
it to be modeled as complex non-linear functions. NICE adopts an additive coupling law which
defines the function g(.) as g(a,b) = a + b. Also, reLU is chosen as the coupling function m(.).

A single coupling layer leaves part of the input unchanged. This is problematic, since modification
of every dimension is desired. To achieve this, roles of partitions are interachanged in arjacent layers
to ensure proper mixing.

which evaluates to 1.

4.2.2 Real-valued Non-Volume Preserving

This subsequent work (RealNVP) [3] is an extension to the previous work (NICE) to enable multi-
scalable architecture. The model uses affine coupling law as its primary constituent. This is defined
as:

Y1:d = T1.d (59)
Ya+1:D = Tap1:0 © exp (s(z1:a)) + t(21:0) (60)

where Iy = [1,d] and I = [(d + 1), D]. Also, exp(s(.)) represents the scale and ¢(.) represents
the shift operation respectively. The Jacobian of this transformation is also a triangular matrix
(derivation has been provided in appendix).

Apart from the affine transformation, the model also proposes partitioning schemes across chan-
nels of input images and checkerboard pattern-based partitioning for exploiting pixel correlations.
Further, to enable deep networks, the work proposes using techiniques such as Gaussianization and
invertible batch-normalization. It achieves to get competitive scores against state-of-the variants,
with some advantages that are discussed in the appendix.

4.2.3 Masked Autoregressive Flow

The section on Inverse Autoregressive Flow (IAF) has already described how Autoregressive models
such as MADE [4] can be used as normalizing flows. Masked Autoregressive Flow (MAF) [11] uses
the transformation function in Eq. (46) contrary to IAF which uses the inverse function. Since the
inverse function can be parallelized, MAF is suitable for computation of the density p(x) of an
externally provided data point x. Sampling a new point from MAF requires D sequential passes
which cannot be parallelized and hence sampling is slow. However, in the case of IAF, as the inverse
function is used, sampling is fast but density estimation is slow and requires D sequential passes.

20

5 NF in Probabilistic Programming Languages

Normalizing flows have been implemented in two recent deep probabilistic programming languages
Pyro (based on Pytorch) and Tensorflow Probability (TFP, based on Tensorflow). They provide
a construct called the Bijector for the implementation of an invertible transformation required
for construction of a normalizing flow. New transformation functions can be defined by extend-
ing the Bijector class. TFP also provides a construct called the TransformedDistribution
which takes in a base distribution (which is generally a simple distribution) and a Bijector. A
TransformedDistribution represents the distribution obtained after applying the Bijector on
the base distribution. A number of functions commonly used in deep learning (e.g., Affine, Sig-
moid, RealNVP) have been implemented as Bijectors in TFP. Another bijector called Chain is
provided in TFP that converts a list of bijectors into a single bijector which represents a flow. The
complete documentation of normalizing flows in TFP is given in [1].

Defining a custom transformation requires extending the Bijector class and implementing three
functions: 1) _forward — receives samples x from the base distribution as an input, evaluates the
function y = f(x), and returns the variable y. 2) _inverse — receives y as the input and outputs
x corresponding to the inverse of the function, i.e., z = f~!(y). 3) _inverse_log_det_jacobian —

-1
receives y as the input and computes the inverse log-determinant of the Jacobian, i.e., log det ’ agy .

Let’s define the three functions for an example function, the Parametrized ReLU (PReLU)
function.

_ _ > 61
y = f() {am otherwise, where a € [0, 1] o
z=f 1(3/) = { -1 i .
a"ly otherwise
af—l B 1 ify; >0 (63)
Ay . o é otherwise

An example bijector implementation for the PReLU function is given in the appendix.

6 Recent Advances

In this section, we discuss several recent works that used normalizing flows. We only explain the
higher-level concept of each work. Interested readers should refer to the original paper given in the
reference.

6.1 Pixel Recurrent Neural Network

Pixel Recurrent Neural Network (PixelRNN) [10] is an auto-regressive image generative model
where the joint distribution over the image pixel is factorized into a product of conditional distri-
bution. This means that the probability of pixel at position ¢ is given as: p(x;|x1,...,x;—1) where
Tr1,...,%;_1 is the previously generated pixels. This is a strong and counter-intuitive assumption
for an image generation where pixel mostly conditioned on their neighbors. However, PixelRNN is

21

proven to work well for image completion and generation task. In image completion, the occluded
pixel is generated by conditioned upon the non-occluded pixels.

Oord et. al. [10] proposed three methods model an auto-regressive image generation. First, Row
LSTM 1D convolution is used to generate image row by row from top to bottom. However, Row
LSTM cannot capture the whole previously generated pixels since there is a coarse-graining in the
convolution method. Second, Bidirectional LSTM is used to capture all the generated pixels as the
context. Every pixel is conditioned upon their neighboring pixels except the one that has not been
generated. However, LSTM training is known to be expensive so the authors proposed another
model based on CNN. Third, Pixel CNN used a masked convolution by setting the filter of the
pixels that has not been generated as zero.

6.2 Wavenet

Wavenet [14] used the idea of Pixel CNN from [10] for raw audio generation. It used one-dimensional
convolution Pixel CNN to generate raw audio. Wavenet has been proven to be the state-of-the-art
model for text-to-speech model. Google Assistant in Android use wavenet to generate the audio of
the assistant.

Similar to Pixel CNN, the joint probability of an input audio is modelled by a stack of causal
convolutional layers. Causal convolution has similar idea to masked convolution by shifting the
output of a normal convolution by a few timesteps so it does not violate the autoregressive require-
ment. One of the problems with causal convolution is that it requires deep layers to capture long
range dependency. The authors proposed to use dilated convolution where the convolution filter is
applied over an area larger than its length. This is done by skipping input values with a certain
step.

6.3 Glow

Glow [6] extended and simplified the NICE and RealNVP model explained in Section 4.2.2 with
three main extensions. First, the authors used activation normalization (act-norm) instead of batch
normalization in RealNVP. Act-norm performs a channel-wise normalization and is faster than
batch normalization. Second, the authors used 1 x 1 convolution for the channel-wise permutation.
NICE and RealNVP proposed a flow containing the equivalent of a permutation that reverses the
ordering of the channels. This is changed with a 1 x 1 convolution so that the permutation can be
learned. Third, they extend RealNVP so that it can work faster by changing it into a multi-scale
architecture. The authors splitted each step of the flow so it can be parallelized.

All of the additions mentioned before can be inverted and log-determinant of the Jacobian can
be computed easily. Please refer to the paper for the details of the inversion and calculation of
the Jacobian matrix. Glow has similar advantage as RealNVP that it can generate a high quality
images. Moreover, the latent space learned by Glow is meaningful. This means that we can control
the output of the generated image by tuning the latent space.

7 Conclusion
In this project, we have discussed how to transform a simple base distribution into a complex

distribution by applying a series of invertible transformations called normalizing flows. We also
discussed how normalizing flows can be applied to various representation learning regimes. Firstly,

22

normalizing flows can be used for richer latent-posterior proposals for inference in the Variational
Autoencoder. We discussed Planar and Radial Flows [12], Inverse Autoregressive Flow [7], and
Sylvester Normalizing Flow [13] in this regime. Secondly, normalizing flows can be used to estimate
density when the exact likelihood is not known. We discussed NICE [2], RealNVP [3], and Masked
Autoregressive Flow [11] in this regime. We also discussed how normalizing flows can be imple-
mented in deep probabilistic programming languages specifically Tensorflow Probability. Finally,
we discussed several recent advances in normalizing flows used for image and audio generation.

In present day trends, applications of normalizing flows are being heavily used in methods
involving variation inference. These are scalable methods which provide robust generative solutions.
In contrast, auto-regressive methods suffer from slow sampling as the forward calculation of an
autoregressive flow is not parallelizable. Density estimation methods ameliorate problems present
in the mentioned methods, however their popularity remains constrained for historical reasons.
Nevertheless, benchmark performance by models such as Glow seem to reverse this trend. From
the PPL perspective, Tensorflow Probability provides the highest range of bijector families, thus
making it the ideal choice for flow-based implementations.

Finally, {£8t22% 1 blog

1. Adam Kosiorek’s Blog
2. Jianlin Su’s Blog

3. Eric Jang’s Blog

4. Brian Keng’s Blog

8 Missing Flow

8.1 Challenges

Normalizing flows(NF) have richer posterior than normal VAE frames, eg. HI-VAE [9], which im-
provement is the basical advantage of NF. For details, refer to (35) and (15).

ELBO = logp(z) — KL(Qu(Z|X)||P(2]X))
K (64)
ELBO = E sy llog p(x20)] — K L(a0 (20 0)|1p(2)) + Egoanpey | > log det |
k=1
1. Wb R[] samples 2 [H] B R
2. BERREdE ML AR I, A TR 5 HE R Z AR (proof)
3. ndnr) A n

4. RERAVBBLCE R IR 7 SEHERARA 7 2GE L — K AR SR, AR B A
IR SR BE T2 > WI{E (proof: HONSICIRZEM , il &1l

23

http://akosiorek.github.io/ml/2018/04/03/norm_flows.html
https://kexue.fm/search/%E5%8F%98%E5%88%86%E8%87%AA%E7%BC%96%E7%A0%81%E5%99%A8/
https://blog.evjang.com/2018/01/nf1.html
http://bjlkeng.github.io/posts/autoregressive-autoencoders/

8.2 Improvement

Make some contributions.

L. Wik HI-VAE [9] A2t id A2 , (Yol A BN A4 4 N BE ELHHOBTT A Bl (6D , 51 A MADE [4]
A MAF [11] 1) mask A, A2 0F20 70 AE S A A 21 20K .

2. Mt HI-VAE, fnsmxt&BfE BRI, MA@ AR s f— I m . (2% GAIN) Ak
it & AE

(a) FIICEHREE seto H TR, PRALETEARR 2SR h 2520/ . of fRRAZHR

ﬁ%ﬁ?@ﬂj%, 55—k flow J5, #A—A> loss, PRI Fa s (1] b i <8 Fs AR A

(b) R4 R A B AT . S B A RN AR J AR 4 R 3 745 . Parameters in every flow are

computed by former layer.

(c) H=A> flow KM =A AR ERE] T, 7352 user, item, interaction. —FP&ffaf4E

=

d) A boost H-T-2 14
3. AEAHHARAHRTE, A flow £FXFEHIXT imputation HEFTHRAL, B AR
HoAt R
Lo PO S8 BRA AE SN, JUHGR M R, PRAETI i 25 R A B =11 confidence., $2HEFE con-
fidence FlI missing imputation 4R [FRLAT K T7 5 o
8.3 todo list
L efE—A> nf BABAGRA A HI-VAE i 0] 0508 .

References

[1] Joshua V Dillon, Ian Langmore, Dustin Tran, Eugene Brevdo, Srinivas Vasudevan, Dave Moore,
Brian Patton, Alex Alemi, Matt Hoffman, and Rif A Saurous. Tensorflow distributions. arXiv
preprint arXiv:1711.10604, 2017.

[2] Laurent Dinh, David Krueger, and Yoshua Bengio. Nice: Non-linear independent components
estimation. arXiv preprint arXiv:1410.8516, 2014.

[3] Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using real nvp.
arXiv preprint arXiv:1605.08803, 2016.

[4] Mathieu Germain, Karol Gregor, Iain Murray, and Hugo Larochelle. Made: Masked autoen-
coder for distribution estimation. In International Conference on Machine Learning, pages
881-889, 2015.

[5] Geoffrey E Hinton and Ruslan R Salakhutdinov. Reducing the dimensionality of data with
neural networks. science, 313(5786):504-507, 2006.

24

[6]

[7]

Diederik P Kingma and Prafulla Dhariwal. Glow: Generative flow with invertible 1x1 convo-
lutions. arXiv preprint arXiv:1807.03039, 2018.

Diederik P Kingma, Tim Salimans, Rafal Jozefowicz, Xi Chen, Ilya Sutskever, and Max Welling.
Improved variational inference with inverse autoregressive flow. In Advances in Neural Infor-
mation Processing Systems, pages 4743-4751, 2016.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Alfredo Nazébal, Pablo M. Olmos, Zoubin Ghahramani, and Isabel Valera. Handling incom-
plete heterogeneous data using VAEs. Pattern Recognition, 107, 2020.

Aaron van den Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. Pixel recurrent neural
networks. arXiv preprint arXiv:1601.06759, 2016.

George Papamakarios, Iain Murray, and Theo Pavlakou. Masked autoregressive flow for density
estimation. In Advances in Neural Information Processing Systems, pages 2338-2347, 2017.

Danilo Rezende and Shakir Mohamed. Variational inference with normalizing flows. In Inter-
national Conference on Machine Learning, pages 1530-1538, 2015.

Rianne van den Berg, Leonard Hasenclever, Jakub M Tomczak, and Max Welling. Sylvester
normalizing flows for variational inference. arXiv preprint arXiv:1805.05649, 2018.

Adron Van Den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals, Alex
Graves, Nal Kalchbrenner, Andrew W Senior, and Koray Kavukcuoglu. Wavenet: A generative
model for raw audio. In SSW, page 125, 2016.

25

	Introduction
	Preliminaries and Notations
	Distribution of a Simple Transformation of a Random Value
	Change of Variables
	Visualizing of PDF

	VAEs
	Autoencoder
	Reverse Kullback-Leibler Divergence and ELBO
	Variational Autoencoder
	KL in ELBO
	Reconstruction error in ELBO
	Numerical ELBO

	Assumptions in VAE
	What VAE learned?

	Normalizing Flows
	Applications
	Variational Inference
	Planar and Radial Flow
	Inverse Autoregressive Flow
	Sylvester Normalizing Flow

	Density Estimation
	Non-linear Independent Components Estimation
	Real-valued Non-Volume Preserving
	Masked Autoregressive Flow

	NF in Probabilistic Programming Languages
	Recent Advances
	Pixel Recurrent Neural Network
	Wavenet
	Glow

	Conclusion
	Missing Flow
	Challenges
	Improvement
	todo list

