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ABSTRACT
Modeling complex spatial and temporal dependencies are indis-
pensable for location-bound time series learning. Existing methods,
typically relying on graph neural networks (GNNs) and tempo-
ral learning modules based on recurrent neural networks, have
achieved significant performance improvements. However, their
representation capabilities and prediction results are limited when
pre-defined graphs are unavailable. Unlike spatio-temporal GNNs
focusing on designing complex architectures, we propose a novel
adaptive graph construction strategy: Self-Paced Graph Contrastive
Learning (SPGCL). It learns informative relations by maximizing
the distinguishing margin between positive and negative neighbors
and generates an optimal graph with a self-paced strategy. Specifi-
cally, the existing neighborhoods iteratively absorb more reliable
nodes with the highest affinity scores as new neighbors to generate
the next-round neighborhoods, and augmentations are applied to
improve the transferability and robustness. As the adaptively self-
paced graph approaches the optimized graph for prediction, the mu-
tual information between nodes and the corresponding neighbors
is maximized. Our work provides a new perspective of addressing
spatio-temporal learning problems beyond information aggrega-
tion in Euclidean space and can be generalized to different tasks.
Extensive experiments conducted on two typical spatio-temporal
learning tasks (traffic forecasting and land displacement predic-
tion) demonstrate the superior performance of SPGCL against the
state-of-the-art.
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1 INTRODUCTION
Graph Neural Networks (GNNs) for spatio-temporal data forecast-
ing has attracted tremendous research attention in recent years.
Plethora of sophisticated GNN structures and massage passing
mechanisms have been proposed to capture the intra-dependencies
(i.e., temporal correlations within nodes) and inter-dependencies
(i.e., spatial correlations among nodes) – sequentially [15, 45] or
simultaneously [13, 16, 25]. Enabled by the expressive graph struc-
tures, spatio-temporal forecasting has been widely studied in range
of applications, such as traffic forecasting [25, 39], landslide predic-
tion [45], climate forecasting [20], etc.

Despite the significant breakthroughs achieved in spatio-
temporal GNNs (STGNNs), there are certain observations regarding
the state-of-the-arts which motivate our work.

First, most existing methods focus on node embedding learning,
modeling structural and attribute similarity, using 1-dimensional
adjacency and Laplacian matrices to guide feature aggregation.
However, informative correlations between nodes are neglected
and can not be sufficiently modeled solely using adjacency and
Laplacian matrices. A semantic correlation embedding learning
function is desired, which is also expected to make the model trans-
ferable and robust, e.g., the model can be transferred across graphs
with performance guarantees. Current STGNNs are usually opti-
mized end-to-end, ignoring transferability and robustness, which
are hard to quantify and commonly not observed. To this end, in
this work, we propose to learn transferable and robust correlation
embeddings that are invariant to transformations, i.e., the output of
embedding function is consistent with transformations (cf. Fig 1a
for an example).

Second, the existing models are constrained by requiring ex-
plicitly pre-defined graph structures (i.e., adjacency matrix A). In
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(b) Neighbor selection strategy comparison.

Figure 1: Invariance learning and neighbor selection.

the case that the well-defined graph is not available, they utilize
a variety of metrics to measure the pair-wise proximity, such as
geographic distance [20, 27, 42], distance in manifold space [45],
transportation connectivity [29], point of interests (POIs) [15], dy-
namic time wrapping (DTW) [13, 25], etc. These, however, incur
serious problems of manually selecting suitable metrics and corre-
sponding thresholds, and introduce extra inductive bias. In addi-
tion to threshold-based methods, there are also some KNN-based
approaches [9] and iterative ones [6], which are still inflexible
as they require specific metrics, and the global optimal hyperpa-
rameters may not be optimal for all nodes especially on dynamic
graphs. Some works have proposed to reduce the dependence
on pre-defined graphs and emphasize the capability of learning
the latent [43], incomplete [2, 35] and even implicit graphs (i.e.,
graph without explicitly defined adjacency or highly sparse net-
work) [6, 14, 44]. However, evaluating the quality of graph embed-
ding relies on the downstream forecasting tasks or prior knowledge
of graph structure. Moreover, most methods model spatial and
temporal patterns separately, neglecting the spatio-temporal in-
teractions [13, 25, 39, 45] – which also restricts the forecasting
performance. Fig. 1b illustrates how our proposed model (denoted
SPGCL) considers spatio-temporal features and adaptively adjusts
the neighborhood until the optimal adjacency relationships (in
comparison with the other approaches).

Third, contrastive learning (CL) has recently become one of the
most popular self-supervised approaches for capturing the invari-
ance between similar (positive) data pairs and learning generaliz-
able, transferrable, and robust representations via maximizing the
mutual information (MI) [18, 31, 37]. CL methods have achieved
great success in computer vision (CV) and natural language pro-
cessing (NLP), and even outperformed supervised methods in some
tasks [4, 10, 22, 28]. In contrast, graph CL is still under-explored due
to the non-Euclidean properties and the rich structured informa-
tion and node attributes. Various graph augmentations, encoding

architectures, and contrastive objectives have been investigated in
the literature [30, 32, 40, 41, 46]. They mainly focus on learning
node embeddings on discrete graphs and labeled graphs (e.g., bio-
chemical molecules, social networks [41], reference networks, and
co-purchase networks [46]). However, it remains unclear whether
CL is suitable for implicit graphs with undetermined correlations
among the nodes (e.g., the traffic sensor data or point clouds data).

To address the issues observed above, we propose a novel Self-
paced Graph Contrastive Learning framework (SPGCL). It learns the
transferable joint spatio-temporal correlations on implicit graphs
without manually designing the threshold of adjacency or construct-
ing graphs with fixed neighborhoods, while capturing both spatial
and temporal invariances. More specifically, the distinct features of
SPGCL and our main contributions are:
• We theoretically prove that the global CL objective can be opti-
mized via minimizing local CL loss of multiple steps. Specifically,
we iteratively learn from the current context to discriminate
reliable positive neighbor nodes incorporated in the following
context so that the MI between a node and corresponding neigh-
bors is maximized.

• We analyze the growth of MI and propose a self-paced label-
ing strategy to facilitate the model convergence on the implicit
graphs under positive-unlabeled learning (PUL) paradigm [5, 24].
To our knowledge, this is the first work to train CL using PUL
and calculate the contrastive loss by self-paced labeling.

• Inspired by [34], we learn the mapping from different proximi-
ties to the inter- and intra- relationships between nodes directly,
instead of manually setting thresholds [13, 25] or learning node
embedding first and then generating adjacency [2, 21, 23]. There-
fore, the CL task is discriminating the positive relations from
others which is significantly distinct from existing augmentation-
based graph CL methods [30, 32, 40, 41, 46].
We conducted comprehensive evaluations on two typical spatio-

temporal tasks, including traffic forecasting and land displace-
ment prediction. The experimental results verify the advantages of
SPGCL over the state-of-the-art baselines.

2 RELATEDWORK
Contrastive Learning: The main idea of contrastive learning is
to discriminate positive and negative data and learn invariances
among similar data by special sampling strategies. The contrastive
loss is derived from MI maximizing between similar (positive) data
pairs 𝑋 and 𝑌 (cf. [18, 31, 37]) as

𝐼 (𝑋 ;𝑌 ) = 𝐻 (𝑋 ) − 𝐻 (𝑋 |𝑌 ) = E𝑝 (𝑥,𝑦)
[
log

𝑝 (𝑥 |𝑦)
𝑝 (𝑥)

]
, (1)

where𝐻 (𝑋 ) = −∑
𝑝 (𝑥) log𝑝 (𝑥) is the entropy. In CV, positive data

can be generated from augmentations (e.g., random flip, cropping,
resizing) of the same image, and negative samples are augmented
from other images. By learning the invariance to image augmen-
tations, CL methods even outperformed supervised methods in
certain tasks [4, 10, 22, 28].

Inspired by the success of CL in CV and NLP domains, a num-
ber of graph CL approaches have been proposed to explore effec-
tive augmentations, sample strategies, objectives, etc. For example,
GCC [32] captures the local universal structural patterns among
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different graphs via subgraph sampling. GraphCL [41] consists
of four types of data augmentations from the perspective of en-
forcing perturbation invariance. GMI [30] derives two contrastive
objectives for direct optimization without graph augmentations.
GCA [46] generates graph views via adaptive augmentation strate-
gies. However, most (if not all) existing methods focus on learning
node embedding from the structural domain and/or the attribute
domain, neglecting the correlation (edge) embeddings between two
nodes. Inspired by [34], we assume a dense adjacency on implicit
graphs, mark the edges that have a facilitating effect as positive, and
consider the opposite and irrelevant edges as negative. We design
an iterative training framework for learning the spatio-temporal
interactions from contrasting different types of reliable edges.

Positive-unlabeled learning: Certain works aim to classify
positive data from unlabeled sets, which has been increasingly
studied in recent years, along with the massive unlabeled realis-
tic data produced by the rapid development of social networks,
recommendation systems, etc. Early works relied on heuristic semi-
supervised methods [26]. Subsequently, reweighting methods were
investigated, which regard unlabeled data as weighted positive and
negative data simultaneously [12], with unbiased [11] and non-
negative [24] risk estimators. More recently, a self-paced learning
framework was proposed [5] for classifying reliable positive ex-
amples progressively. In this work, we design an extended version
of positive-unlabeled-negative (PUN) instead of a binary classifier
combined with CL.

3 METHODOLOGY: SPGCL
We now provide the basic formalism and then proceed with the
details of SPGCL.
–Problem definition: The spatial component of the data, denoted as
a matrix V ∈ R𝑁×𝑑 , corresponds to a collection of 𝑁 monitored
locations – each with a unique 𝑑 dimensional spatial coordinates.
In addition, each location is associated with a temporal sequence of
length 𝑇 , consisting of 𝐹 observations per time instant, denoted as
X ∈ R𝑁×𝑇×𝐹 . The spatio-temporal observations at 𝑡-th timestamp
are denoted as X𝑡 = (x𝑡1, x

𝑡
2, · · · , x

𝑡
𝑁
) ∈ R𝑁×𝐹 . The main goal of

spatio-temporal forecasting is to predict the X̂ ∈ R𝑁×𝑇 ′×𝐹 of
all 𝑁 locations in future 𝑇 ′ timestamps:[

X𝑡−𝑇+1,X𝑡−𝑇+2, · · · ,X𝑡
] 𝑓
−→

[
X𝑡+1,X𝑡+2, · · · ,X𝑡+𝑇

′ ]
. (2)

–Self-paced graph construction: For predictions, we employ the mes-
sage passing on graph structure G = (𝑉 , 𝐸,A), where 𝑉 is a set of
nodes, 𝐸 is a set of edges and A is an adjacency matrix. Since 𝐸 is
generally not explicitly defined, we first provide an initial adjacency
A𝑡,0 and then infer the true adjacent relationship via the score func-
tion 𝑔, together with the observations X𝑡 and locations V. To better
distinguish among the edges, we split all potential edges into three
parts: 𝐸𝑃 – labeled positive set (i.e., edges in 𝐸); 𝐸𝑁 – labeled nega-
tive set; and 𝐸𝑈 – unlabeled set (i.e., 𝐸 = 𝐸𝑃 ∪ 𝐸𝑁 ∪ 𝐸𝑈 ). Potential
edges in 𝐸𝑈 with confident scores greater than 𝛿+ are added to 𝐸𝑃 ,
while scores smaller than 𝛿− are put in 𝐸𝑁 , i.e., X𝑡 ,V,A𝑡,0

𝑔
−→ Â𝑡,1.

We do it repeatedly until 𝐸𝑈 = ∅, and finally obtain A𝑡,𝐾 .
The basic framework of SPGCL is shown in Fig. 2, illustrating

the different transitions from 𝐸𝑈 into 𝐸𝑃 and 𝐸𝑁 , respectively.
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(k + 1)

Figure 2: The framework of SPGCL. The (𝑘 + 1)th neighbor
is in 𝐸𝑈 with the highest score.

3.1 Iterative Mutual Information Maximization
Constructing an informative graph is a fundamental step of spatio-
temporal forecasting tasks [13, 25]. However, the representation
learning problem on data with implicit correlations (or even with-
out edges) remains unresolved. Inspired by the recent success of
contrastive learning [4, 32, 41, 46], we propose to learn the spatio-
temporal correlations via maximizing mutual information (MI) be-
tween nodes and their corresponding neighbors.

Learning adjacency A from nodes (e.g., locations) V and ob-
servations X is also considered as link prediction or graph gen-
eration [17, 21, 23], and can be formally defined as computing
𝑝 (A|V,X). Optimizing the target likelihood is equivalent to find-
ing all the 𝐾 true neighbors of each node. Let w𝑖 ∈ R𝐹 ′ de-
note the spatio-temporal representation of node 𝑖 and W =

{w1,w2, · · · ,w𝑁 } ∈ R𝑁×𝐹 ′ . The combination of𝐾 arbitrary nodes,
denoted as 𝐶𝐾𝑚 and numbered by𝑚, is |𝐶𝐾 | = 𝑁 !

𝐾 !(𝑁−𝐾)! , which is
significantly large especially for larger value of 𝑁 and 𝐾 . The task
can be alternatively described from the perspective of MI as finding
the best 𝐶𝐾𝑚 maximizing the MI with every nodes:

max log𝑝 (A|V,X) BmaxE𝑝 (𝐶𝐾𝑚,w𝑖 ) [log 𝑝 (𝐶
𝐾
𝑚 |w𝑖 )]

=max 𝐼 (W;𝐶𝐾 ) + E𝑝 (𝐶𝐾𝑚) [log𝑝 (𝐶
𝐾
𝑚)], (3)

which can be further derived from the view of global and local MI:

𝐼 (W;𝐶𝐾 ) = E𝑝 (𝐶𝐾𝑚,w𝑖 ) [log 𝑝 (𝐶
𝐾
𝑚 |w𝑖 )] + 𝐻 (𝐶𝐾𝑚)

=

𝑁∑︁
𝑖=1

|𝐶𝐾 |∑︁
𝑚=1

𝑝 (𝐶𝐾𝑚,w𝑖 ) log𝑝 (𝐶𝐾𝑚 |w𝑖 ) + 𝐻 (𝐶𝐾𝑚)

≥
𝑁∑︁
𝑖=1

𝑅∑︁
𝑟=1

𝑝 (𝐶𝑟,𝐾𝑚 ,w𝑖 ) log 𝑝 (𝐶𝑟,𝐾𝑚 |w𝑖 ) + 𝐻 (𝐶𝐾𝑚), (4)
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where 𝐶𝑟,𝐾𝑚 denotes the permutation of neighbors representing a
route to 𝐶𝐾𝑚 in a given order and there are 𝑅 = 𝑁 !

(𝑁−𝐾)! routes in

total. The equality in Eq. (4) holds iff 𝑝 (𝐶𝐾𝑚 |w𝑖 ) = 𝑝 (𝐶𝑟,𝐾𝑚 |w𝑖 ) – i.e.,
there is one deterministic route for a given start and destination.
However, the search space of 𝑅 is huge and even prohibitive. We
will later present an equivalent task in heuristic style, maximizing
the MI between the community and the next neighbor iteratively.

Without loss of generality, we simplify the joint distribution
𝑝 (𝐶𝐾𝑚,w𝑖 ) as 𝑝 (𝐶𝐾𝑖,𝑚), and use 𝑏𝑟,𝑘 to denote the 𝑘-th neighbor on
the route, i.e., 𝑝 (𝐶𝑟,𝑘𝑚 ) = 𝑝 (𝐶𝑟,𝑘−1𝑚 , 𝑏𝑟,𝑘 ). Moreover, we assume that
all nodes are equally selected as neighbors given an arbitrary start,
i.e., 𝑝 (𝑏𝑟,𝑘 ) = ∑𝑁

𝑖=1 𝑝 (𝑏𝑟,𝑘 |w𝑖 )𝑝 (w𝑖 ) =
1

𝑁−𝑘+1 . We can derive the
log term in Eq. (4) as follows:

log 𝑝 (𝐶𝑟,𝐾𝑚 |w𝑖 ) =
𝐾∑︁
𝑘=1

log
𝑝

(
𝑏𝑟,𝑘 |𝐶𝑟,𝑘−1

𝑖,𝑚

)
𝑝 (𝑏𝑟,𝑘 )

+
𝐾∑︁
𝑘=1

log𝑝 (𝑏𝑟,𝑘 ) . (5)

We split the joint distribution in Eq. (4) at an arbitrary 𝑘 as

𝑝 (𝐶𝑟,𝐾𝑚 ,w𝑖 ) ≃ 𝑝 (𝐶𝑟,𝑘𝑖,𝑚) exp
(
(𝐾 − 𝑘) E

𝑏𝑘

[
log𝑝 (𝑏𝑘 |𝐶𝑘−1𝑖,𝑚 )

] )
. (6)

With Eq. (5) and (6), we can rewrite Eq. (4) as

𝐼 (W;𝐶𝐾 ) ≥ 𝐻 (𝐶𝐾𝑚) + b (𝑁,𝐾)+
𝑁∑︁
𝑖=1

𝐾∑︁
𝑘=1

(
𝐼

(
𝑏𝑘 ;𝐶𝑘−1𝑖,𝑚

)
𝑒
(𝐾−𝑘) E𝑏𝑘

[
log 𝑠𝑖𝑚

(
𝑏𝑘 ,𝐶𝑘−1

𝑖,𝑚

)]
(𝑁 − 𝑘) (𝐾−𝑘)

)
,

(7)
where b (𝑁,𝐾) is a constant determined by 𝑁 and 𝐾 , 𝐼

(
𝑏𝑘 ;𝐶𝑘−1

𝑖,𝑚

)
is the MI between (𝑘 − 1)-th context and 𝑘-th neighbor. According
to [37], it has the following lower bound:

𝐼

(
𝑏𝑘 ;𝐶𝑘−1𝑖,𝑚

)
≥ log𝑁 − L𝑖,𝑘

𝑁
,

where L𝑖,𝑘
𝑁

= − E
(𝑏,𝑐)

log
exp

(
𝑠𝑖𝑚

(
𝑏𝑘 ,𝐶𝑘−1

𝑖,𝑚

)
/𝜏
)

∑
𝜖∈𝐸 exp

(
𝑠𝑖𝑚

(
𝜖,𝐶𝑘−1

𝑖,𝑚

)
/𝜏
)  , (8)

where L𝑖,𝑘
𝑁

is the well-known InfoNCE loss widely used in con-
trastive learning [1, 4], 𝜏 is the temperature parameter, and 𝜖 de-

notes the negative samples. Besides, 𝑠𝑖𝑚
(
𝑏𝑘 ,𝐶𝑘−1

𝑖,𝑚

)
∝
𝑝

(
𝑏𝑘 |𝐶𝑘−1

𝑖,𝑚

)
𝑝 (𝑏𝑘 )

is a matching function measuring the affinity of 𝑏𝑘 for 𝐶𝑘−1
𝑖,𝑚

–
the higher the score, the higher likelihood of a positive context
and a new neighbor. It usually contains three parts: two embed-
ding functions that transform the original representations of one
node and a group of nodes into contrastive embeddings, respec-
tively, i.e., R = 𝑓 (W;𝜙) and R𝑐 = 𝑓 (𝐶𝐾 ;Φ); and a scoring function
that outputs the similarity between the given two embeddings, i.e.,
𝑠𝑖, 𝑗 = 𝑓 (r𝑖,𝑐 , r𝑗 ). For simplicity, we omit all the implementation
details here and present them in Sec. 3.3.

Overall, given (𝑘 − 1)-th neighbors and 𝑠𝑖𝑚(), the optimization
of 𝑝\ (A|V,X) and 𝐼 (W;𝐶𝐾 ) can be achieved via maximizing the
MI from 𝑘 = 1 to 𝐾 iteratively. This also means that the optimal
neighbors w.r.t. to each nodes will be found while the global MI is
maximized.

Recent works have revealed the great impact of true negative
samples on CL [7, 33]. To derive an unbiased version of Eq. (8), we
sample noise data as follows:

Γ
∑︁
𝜖∈𝐸𝑈

exp
(
𝑠𝑖𝑚

(
𝜖,𝐶𝑘−1𝑖,𝑚

)
/𝜏
)
+ (1 − Γ)

∑︁
𝜖∈𝐸𝑁

exp
(
𝑠𝑖𝑚

(
𝜖,𝐶𝑘−1𝑖,𝑚

)
/𝜏
)
,

(9)

where Γ ∈ (0, 0.5) is a weighting parameter – i.e., we draw more
true negative samples from 𝐸𝑁 than 𝐸𝑈 and reject the false negative
samples from 𝐸𝑃 .

3.2 Initialization and Training
There are two vital problems to be solved: how to define the positive
edges at the beginning and when to stop training.

First, note that 𝑠𝑖𝑚() in Eq. (8) is optimized via distinguishing
positive neighbors from the other nodes – i.e., the positive edges
are indispensable to calculate a non-zero contrastive loss. The meth-
ods of selecting positive data pairs have been well studied in other
domains. In computer vision [4] and graph learning [41], the posi-
tive data pairs are two augmentation views from the same image
and graph structure. In NLP, words from the same sentence are
all positive pairs [37]. Though arbitrary edges can be regarded as
negative, the definition of positive edges is still a problem in an
implicit graph where deterministic correlations are not available.

Second, the optimization of Eq. (7) obtains the neighbors that
maximize the MI w.r.t. node 𝑖 – but deciding the optimal param-
eters 𝐾 for all the nodes is nontrivial, since different nodes have
different receptive fields and the growth of MI is boundless with
more neighbors.

To address the two problems, we design a self-paced graph con-
trastive learning framework that starts from reliable neighbors and
searches all 𝐾 optimal neighbors automatically. If the initial reliable
neighbors are not available, we first generate reliable positive and
negative edges via KNN, which has low recall but high precision for
a small 𝑘 ≪ 𝑁 . Then we initialize the context and the next neighbor
relative to node 𝑖 – i.e.,𝐶𝑘−1

𝑖,𝑚
and 𝑏𝑘 . The intuition is twofold: (1) the

pair-wise proximity is insufficient to discriminate all relationships,
but still serves as reasonable knowledge for reliable neighbors; and
(2) the nodes near the discriminative margin are difficult to clas-
sify, but we are confident to find 𝑘 reliable positive neighbors via
unsupervised methods as long as 𝑘 is small enough.

Next, given a context 𝐶𝑘−1
𝑖,𝑚

and the matching score function
𝑠𝑖𝑚(), we modify the existing non-negative PUL loss – a.k.a un-
biased empirical risk estimator [5, 24] – to a positive-negative-
unlabeled version:

L𝑖,𝑘
𝑃𝑈

=
[

|𝐸𝑃
𝑖
|

∑︁
𝑏∈𝐸𝑃

𝑖

ℓ (𝑔 (𝑏) , 1) + 1 − [
|𝐸𝑁
𝑖
|

∑︁
𝑏∈𝐸𝑁

𝑖

ℓ (𝑔 (𝑏) ,−1) +

max
©«0,

1
|𝐸𝑈
𝑖
|

∑︁
𝑏∈𝐸𝑈

𝑖

ℓ (𝑔 (𝑏) ,−1) − [

|𝐸𝑃
𝑖
|

∑︁
𝑏∈𝐸𝑃

𝑖

ℓ (𝑔 (𝑏) ,−1)
ª®®¬ , (10)

where [ ∈ (0, 1) is the assumed prior probability of positive edges
approximated by |𝐸𝑃 |/|𝐸 |. Edges in 𝐸𝑃

𝑖
are positive w.r.t. to node 𝑖 ,

and 𝑔(𝑏) = 𝑠𝑖𝑚(𝑏,𝐶𝑘−1
𝑖,𝑚

) is the matching score of 𝑏 for a given con-
text. In addition, ℓ : R×{±1} → R is the classifier loss implemented
as a Sigmoid loss here, i.e., ℓ (𝑥,𝑦) = 1/(1 + exp (𝑥𝑦)).
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After SPGCL and 𝑠𝑖𝑚() at 𝑘 step have converged, we sort the
scores of the unlabeled edges and select the edges with the most
confident scores to label, which generates 𝐸 at 𝑘+1 step. For brevity,
we only discuss the positive ones. Ideally, we could select the edge
with the highest score from 𝐸𝑈 and add it to 𝐸𝑃 ; however, this
process is extremely slow in practice. Therefore, we choose 𝛼 edges
whose scores are larger than 𝛿+ at each step. Edges whose scores
are smaller than 𝛿+ in _ epochs are removed from 𝐸𝑃 . Such strict
access and elimination rules ensure that the positive edges in 𝐸𝑃 are
reliable and the training process is stable. For the negative edges,
the hyperparameters are 𝛿− and 𝛽 . In summary, the choices of 𝛿±, 𝛼
and 𝛽 are empirically balanced between training time and stability,
which, however, are not directly related to the optimal model.

Note that the coefficients are larger when 𝑘 is smaller in Eq. (7),
which means the nearest neighbors contribute more to global MI.
Therefore, we have a high threshold at the beginning of training
and with a decaying factor to ensure that only the most reliable
nodes are selected when 𝑘 is small.

3.3 Architecture of SPGCL
Instead of learning node embeddings first and then the correlations
between nodes as most previous works [2, 21–23], we learn the
spatio-temporal interactions directly via mapping relative represen-
tations to relation embeddings, which may also benefit to model
transferability [34].

Without loss of generality, we first establish relative spatio-
temporal coordinate systems with node 𝑖 as the origin, and propose
four relationship measurements between node 𝑖 and its neighbors:

𝑤𝑑𝑖𝑠𝑖, 𝑗 = ∥V𝑖 − V𝑗 ∥2,

𝑤
𝑎𝑛𝑔

𝑖,𝑗
= sin(\𝑖, 𝑗 ) =

V𝑖 [2] − V𝑗 [2]
𝑤𝑑𝑖𝑠
𝑖, 𝑗

,

𝑤
𝑠𝑒𝑞

𝑖,𝑗
= DTW(x𝑡𝑖 , x

𝑡
𝑗 ),

𝑤𝑡𝑖, 𝑗 = x𝑡𝑖 − x𝑡𝑗 , (11)

where 𝑤𝑑𝑖𝑠
𝑖, 𝑗

and 𝑤𝑎𝑛𝑔
𝑖,𝑗

are the spatial polar coordinates of node 𝑗
relative to 𝑖;𝑤𝑠𝑒𝑞

𝑖,𝑗
is the similarity between temporal sequences X𝑡

𝑖

and X𝑡
𝑗
calculated by DTW distance [3] that are widely used for

measuring the similarity between sequential data [13, 25]); and𝑤𝑡
𝑖, 𝑗

is the sequential distance from x𝑡
𝑖
to x𝑡

𝑗
. ∥ · ∥2 is a L2 norm.

Next, we can concatenate the representation of 𝑗 relative to
𝑖 w𝑡

𝑖, 𝑗
=

[
𝑤𝑑𝑖𝑠
𝑖, 𝑗
,𝑤

𝑎𝑛𝑔

𝑖,𝑗
,𝑤

𝑠𝑒𝑞

𝑖, 𝑗
,𝑤𝑡
𝑖, 𝑗

]
if all measurements are avail-

able, where the first two and the last two dimensions mea-
sure spatial and temporal proximity respectively. Denote W𝑡

𝑖
=

{w𝑡
𝑖,1,w

𝑡
𝑖,2, · · · ,w

𝑡
𝑖,𝑁

} ∈ R𝑁×𝐹 ′ , where w𝑡
𝑖, 𝑗

∈ R𝐹 ′ and w𝑡
𝑖,𝑖

= 0.
Finally, we apply normalization on W𝑡 to avoid scalar imbalance.

Before data is fed into SPGCL, augmentations are applied to
improve the robustness and transferability. In our model, we used
three types of data augmentations as suggested by [41], including
node sampling, edge perturbation and attribute masking.

Now we introduce the implementation details of graph attention
based SPGCL, where the learned relations are attentional coeffi-
cients. Given 𝐸 at 𝑘 step, we first get the embeddings of spatio-
temporal relationships:

r𝑡𝑖, 𝑗 = 𝑓 (w
𝑡
𝑖, 𝑗 ;𝜙) = MLP

(
w𝑡𝑖, 𝑗

)
, (12)

where r𝑡
𝑖, 𝑗

∈ R𝐹 ′ is the spatio-temporal embedding and MLP is a
multilayer perceptron. We then aggregate features from neighbors
to get the embedding of context relative to node 𝑖:

r𝑡𝑖,𝑐 = 𝑓 (𝐶
𝑘
𝑖 ;Φ) =

1
|N𝑖 |

∑︁
𝑗 ∈N𝑖

(
r𝑡𝑖, 𝑗 ⊙ w𝑡𝑖, 𝑗

)
, (13)

where ⊙ is Hadamard product, and N𝑖 = { 𝑗 |𝑒𝑖, 𝑗 ∈ 𝐸𝑃
𝑖
, 𝑗 =

1, 2, · · · , 𝑁 } is the neighbors of node 𝑖 . The matching score is cal-
culated as

𝑠𝑡𝑖, 𝑗 = 𝑓 (r
𝑡
𝑖,𝑐 , r

𝑡
𝑖, 𝑗 ) = −∥r𝑡𝑖,𝑐 − r𝑡𝑖, 𝑗 ∥2, (14)

where we further apply min-max normalization to rescale scores
so that 𝑠𝑡

𝑖, 𝑗
∈ [−1, 1]. The similarity function 𝑠𝑖𝑚() is therefore

determined by computing Eq. (12), (13) and (14). Note that here
we choose negative Euclidean distance to measure the proximity
instead of the widely used cosine similarity in contrastive learning,
because we contrast the representations of edge samples and ag-
gregated neighbors rather than positive and negative samples as
common settings. The superiority of negative Euclidean distance is
also verified in our practice. Subsequently, we make predictions via
aggregating features from neighbors and calculate the predictive
loss as

X̂𝑖 =
1

𝐻 |N𝑖 |

𝐻∑︁
ℎ=1

∑︁
𝑗 ∈N𝑖

(
Mℎ

(
𝜌

(
R𝑖, 𝑗Uℎ

)
⊙ X𝑗

))
,

L𝑖,𝑘𝑚𝑠𝑒 =∥X𝑖 − X̂𝑖 ∥22, (15)

where R𝑖, 𝑗 ∈ R𝑇×𝐹 ′ is the relationship matrix; X𝑗 ∈ R𝑇×𝐹 is
node features; U ∈ R𝐹 ′×𝐹 and M ∈ R𝑇 ′×𝑇 represent the lin-
ear transformations; 𝐻 is the number of multi-head aggregation;
𝜌 (𝑥) = LeakyReLU(𝑥) is the nonlinear activation.

In addition to the predictive loss in Eq. (15), we sample edges
from 𝐸𝑃 , 𝐸𝑈 and 𝐸𝑁 to calculate contrastive loss L𝑖,𝑘

𝑁
and PU loss

L𝑖,𝑘
𝑃𝑈

via Eq. (8) and (10). Overall, we train model via minimizing
the hybrid loss at 𝑘-th step:

L𝑘 =
1
𝑁

𝑁∑︁
𝑖=1

(
L𝑖,𝑘
𝑁

+ 𝛾1L𝑖,𝑘𝑃𝑈 + 𝛾2L𝑖,𝑘𝑚𝑠𝑒
)
, (16)

where 𝛾 is the reweighting hyperparameter. When testing, 𝐸𝑃 and
the optimal relations are obtained quickly without calculating loss
and gradient backpropagation, and predictions are made via Eq. (15),
respectively.

4 EXPERIMENTS
We now describe the details of our experimental evaluations.
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4.1 Experimental Settings
Datasets. To evaluate the performance of SPGCL, we used four real-
world datasets from two distinct spatio-temporal learning domains.
The first two are INSAR-measured land deformation records of
slopes on both sides of a large-scale hydropower dam – HZY-East
and HZY-West collected by [45]. The other two are traffic flow data
from two highways (PEMS03 and PEMS04) released by [36]. Table 1
summarizes the statistics of the datasets, and we note that the PEMS
datasets have much fewer locations but longer observations.

Table 1: Dataset statistics.

Nodes Edges Frequency Time range

HZY-East 2,164 0 2 weeks 11/30/2018 - 9/8/2019
HZY-West 4,569 0 2 weeks 11/30/2018 - 9/8/2019
PEMS03 358 547 5 minutes 9/1/2018 - 11/30/2018
PEMS04 307 340 5 minutes 1/1/2018 - 2/28/2018

Baselines. We compare SPGCL with following baseline models:
• ARIMA: Auto-regressive Integrated Moving combines auto-
regressive and moving average for time series prediction.

• SVR: Support Vector Regression uses a linear support vector
machine for regression tasks.

• GRU [8]: Gated Recurrent Unit network, which captures long-
short term dependency on time series.

• STGCN [42]: Spatial-Temporal Graph Convolutional Network
uses spatial-graph convolution and temporal-gated convolution
to capture the spatial and temporal dependencies, respectively.

• ASTGCN [16]: The attention-based spatio-temporal graph con-
volutional network consists of a spatial attention network and
a temporal attention network. Besides, MSTGCN [16] is also in-
troduced as a degraded version, which does not have the spatio-
temporal attention mechanism.

• SA-GNN [45]: Slope-Aware Graph Neural Network proposes
a weighted locally linear embedding to learn surface manifold
through modeling the spatial dependency among different moni-
tored locations.

• STGODE [13]: Spatial-Temporal Graph Ordinary Differential
Equation Networks, which captures spatial-temporal dynamics
through a tensor-based ordinary differential equation and utilize
spatial-temporal features simultaneously.

• AGCRN [2]: Adaptive Graph Convolutional Recurrent Network,
which adopts a learnable graph rather than a static one to infer the
inter-dependencies among different traffic series automatically.

• IDGL [6]: Iterative Deep Graph Learning, which is an end-to-end
graph learning framework for jointly and iteratively learning
the graph structure and graph embedding. As a variant, IDGL-
ANCH [6] uses an extra regularization loss on the anchor graph.

Settings. We split all the datasets with a 5:3:2 ratio into training
sets, validation sets, and testing sets. For traffic data, we use the
past 12 time steps to predict the future 12 time steps, and the results
are evaluated via the root mean squared errors (RMSE), mean abso-
lute errors (MAE), and mean absolute percentage errors (MAPE),
following the setting in [2, 13]. For land deformation data, we use
past 3 time steps to predict the future 1 time steps, and the results
are evaluated via RMSE, MAE, accuracy with threshold 1 (ACC), co-
efficient of determination (R2), and explained variance score (EVS),

following the setting in [45].While there are inherent (sparse) edges
in PEMS03 and PEMS04, the adjacency matrices on HZY-East and
HZY-West are generated by KNN with 𝐾 = 200 and 250, respec-
tively, except for methods with adaptive adjacency construction. All
deep learning models, including ours, are optimized via Adam opti-
mizer with an initial learning rate 3𝑒−4, which decays with the rate
of 0.9 every 50 epochs. Besides, early stopping is triggered when
validation loss has not declined for 20 consecutive epochs. The
hyperparameters of SPGCL are tuned as follows: the cross entropy
temperature 𝜏 = 0.1; prior probability [ = 0.1; and the weighting
parameters Γ = 0.3, 𝛾1 = 10, and 𝛾2 = 20. We have 2 layers of
aggregation with 𝐻 = 3 multi-heads. For HZY datasets, embedding
dimensions 𝐹 ′ = 12, patience _ = 10, the positive and negative
threshold is 𝛿+ = 0.9 and 𝛿− = 0.4 respectively with 𝛼 = 𝛽 = 20,
the numbers of positive, unlabeled and negative neighbor samples
of node 𝑖 are min( |𝐸𝑃

𝑖
|, 200), min( |𝐸𝑈

𝑖
|, 2000) and min( |𝐸𝑁

𝑖
|, 2000)

respectively. For PEMS datasets with less nodes but longer time
series, the hyperparameters are 𝐹 ′ = 24, _ = 5, 𝛿+ = 0.9, 𝛿− = 0.2,
the numbers of positive, unlabeled and negative edge samples are
min( |𝐸𝑃

𝑖
|, 30), min( |𝐸𝑈

𝑖
|, 300) and min( |𝐸𝑁

𝑖
|, 300), respectively.

All experiments are conducted on a NVIDIA GeForce RTX 3090
GPU, and the reported results are the best of 20 runs for all models.

4.2 Overall Comparisons
The overall performance comparisons are summarized in Table 2.
Note that SA-GNN performswell onHZY, but the specially designed
embedding algorithm requires spatial coordinates, which aremissed
on PEMS datasets. According to the results, deep learning methods
achieved better results than statistical methods such as ARIMA
and SVR – lacking spatial dependencies modeling. MSTGCN and
STGCN model the spatial and temporal dependencies separately,
which leads to poor performance. Though STGODE and ASTGCN
consider the spatio-temporal dependencies simultaneously, they
still rely on static graphs with manually set hyperparameters (dis-
tance thresholds or 𝐾 neighbors). Their receptive fields are either
oversized or undersized when nodes are densely or sparsely dis-
tributed with static global hyperparameters. Moreover, from a tem-
poral perspective, the relations between nodes are also dynamically
changing. SPGCL and AGCRN outperforms other baselines signifi-
cantly, indicating the superiority of adaptive graph construction
over static ones. However, AGCRN still relies on the inner vector
product to infer the Laplacian matrix and the corresponding graph
convolution to make forecasts, rather than taking full advantage
of the learned informative pair-wise relationships. Though IDGL
has used adaptive graphs, it is designed for classification tasks and
therefore performs poorly on spatio-temporal forecasting.

It is noteworthy that the superiority of SPGCL is more significant
on HZY than on PEMS, which can be attributed to three aspects.
First, there is no predefined adjacency matrix in the HZY dataset.
Note that KNN is utilized for other models except the adaptive
methods (i.e., IDGL, AGCRN, and our SPGCL), whichmay inevitably
introduce bias. Second, spatial coordinates are missed on PEMS,
causing only two measurements in Eq. (11) to be available, and thus
the expressiveness of SPGCL is limited. Finally, data changes rapidly
and periodically on PEMS, but slowly and has a noticeable trend
(land deformation) on HZY. Finally, SPGCL focuses on designing
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Table 2: Overall performance comparisons of different approaches on two types of spatio-temporal forecasting. We use the
paired t-test with significance level at 0.05 on all reported results.

HZY-East HZY-West PEMS03 PEMS04

Method RMSE MAE ACC R2 EVS RMSE MAE ACC R2 EVS RMSE MAE MAPE(%) RMSE MAE MAPE(%)

ARIMA 6.704 3.693 0.021 0.171 0.204 4.888 4.088 0.045 0.105 0.215 47.59 35.41 33.78 73.19 37.21 29.38
SVR 4.750 3.693 0.029 0.135 0.262 3.956 3.209 0.022 0.108 0.274 36.92 22.95 22.62 44.55 28.73 19.20
GRU 0.277 0.235 0.278 0.197 0.253 0.250 0.204 0.373 0.223 0.315 35.51 21.73 23.86 41.78 27.68 19.71
IDGL 0.197 0.170 0.328 0.207 0.290 0.169 0.164 0.591 0.286 0.293 33.46 20.21 21.77 39.29 25.59 18.35
IDGL-ANCH 0.184 0.188 0.467 0.288 0.286 0.150 0.158 0.598 0.295 0.301 33.02 19.84 20.93 37.69 24.66 17.24
STGCN 0.152 0.141 0.571 0.376 0.396 0.142 0.148 0.607 0.315 0.315 30.22 17.40 17.08 34.92 21.23 14.04
MSTGCN 0.143 0.149 0.575 0.389 0.409 0.146 0.147 0.621 0.356 0.356 32.70 19.80 22.03 38.39 25.15 19.02
ASTGCN 0.127 0.097 0.677 0.624 0.636 0.137 0.127 0.664 0.493 0.494 33.22 19.38 19.10 35.22 22.93 16.56
SA-GNN 0.124 0.104 0.723 0.646 0.646 0.103 0.098 0.709 0.641 0.655 - - - - - -
STGODE 0.106 0.087 0.769 0.729 0.730 0.115 0.117 0.698 0.583 0.588 28.74 16.58 17.59 33.02 20.97 13.84
AGCRN 0.098 0.069 0.839 0.751 0.751 0.100 0.103 0.732 0.669 0.669 28.12 16.92 17.98 32.11 19.67 13.37

SPGCL 0.093 0.062 0.852 0.766 0.766 0.091 0.096 0.789 0.685 0.687 27.79 16.52 17.91 31.85 19.41 15.50

a general neighbor selection and adjacency construction method.
Unlike other STGNNs, it did not pay attention to the periodicity
trend of specific data. Without finetuning on the attributed data,
SPGCL may suffer from the oversmoothing issue when aggregating
features, which also explains why the performance of SPGCL is not
the best in some cases.

4.3 Ablation Study
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Figure 3: RMSE results of ablation experiments.

To further verify the effectiveness of the proposed hybrid loss in
Eq. (16) and investigate different adjacency construction strategies,
we conduct the following ablation experiments:
• GAT-KNN: The adjacency matrix is constructed by KNN with
𝑘 = 200, 250, 60, 50 on four datasets. A 3-layers GAT [38] with 3
multi-heads is utilized to make predictions.

• GAT-Threshold: The adjacency matrix is constructed by connect-
ing node pairs whose DTW distance is smaller than 0.5. The same
GAT structure with GAT-KNN is applied.

• SPGCL-PUL: The contrastive loss (cf. Eq. (8)) is removed, but the
predicting module remains the same.

• SPGCL-CL: The Positive-negative-unlabeled loss (cf. Eq. (10)) is
removed and the other settings are the same.
The RMSE results shown in Fig. 3 indicate that adaptive methods

significantly outperform static ones because: (1) the manually set
hyperparameters are not optimal for all nodes; and (2) adjacent
relations may change along with time. This phenomenon is more
significant on HZY than PEMS, since there are more nodes in HZY
data and the land deformation varies slowly, i.e., it is easier to model
this trending pattern than the traffic pattern.

Though the empirical risk estimator of PUL contributes to fore-
casts and the adaptive labeling strategy, SPGCL-CL obtains better
performance than SPGCL-PUL. This result indicates that the risk es-
timator is less effective than contrastive loss and the great impact of
learning from contrasting positive and non-positive representations.
Besides, SPGCL-CL performs better on HZY, as there are enough
negative samples in the HZY dataset, which has been proved critical
in contrastive learning [4, 37, 41].

4.4 Visualizations of SPGCL
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Figure 4: The distributions of similarity scores.

Visualization of similarity score distribution. We first visual-
ize the distributions of similarity scores on HZY-east at 0th step and
60th step in Fig. 4a and 4b respectively. The histogram shows the
distribution of all scores, and the 𝑁 grey lines represent the proba-
bility density of scores associated with each of 𝑁 nodes. Clearly,
scores follow a symmetrical unimodal distribution when 𝑘 = 0,
i.e., normal distribution, which is intuitive since parameters are
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Figure 5: Neighbors of each nodes on the cropped area,
where the radius and color indicate the number of neigh-
bors.
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Figure 6: Selected neighbors of center node at different steps.

randomly initialized. The distribution at 𝑘 = 60 is an asymmetrical
bimodal distribution which means that the optimized SPGCL is ca-
pable of discriminating positive and negative edges. The observed
major mode is much larger than the minor mode since the assumed
positive prior [ = 0.1 is low. We further draw the distributions of
positive and negative scores in Fig. 4c and 4d, which are selected
based on 𝛿−opt = −0.4 and 𝛿+opt = 0.4. The ratio of obtained positive
edges is 0.5M / 4.6M ≃ 0.12 ≃ [. Considering the three-sigma rule
of thumb, we are confident that most positive and negative edges
are included in 𝐸𝑃 and 𝐸𝑁 respectively, and the rest edges remain
in 𝐸𝑈 .
Visualization of neighbor selection. Notable, some nodes take
many other nodes as neighbors – i.e., the grey lines have large
major modes. We further investigate those nodes with large ma-
jor mode and draw scatters on the cropped area for brevity, as
shown in Fig. 5, where the radius represents the number of neigh-
bors selected by SPGCL. We found an apparent clustering effect
of larger circles (the yellow ones). In other words, the nodes in
some monitored areas exhibit high spatio-temporal proximity. To
validate this observation, in Fig. 6 we show the neighbors of the
node 425 (red star) chosen by different methods. For intuitive com-
parison, we compare SPGCL with three adaptive methods and two
basic metrics, i.e., DTW and spatial Euclidean distance with manual
threshold, representing the temporal and spatial proximity, respec-
tively. Among all methods, SPGCL orders neighbors by affinity
and shows a convincing neighbor selecting strategy considering
spatio-temporal proximity, which is emphasized in spatio-temporal

forecasting tasks [19, 45]. In contrast, AGCRN shows disorganized
selection since it learns task-specific and forecasting-oriented node
embeddings, neglecting the spatio-temporal dependencies. IDGL
introduces iterative learning and graph similarity metric learning,
obtaining more reasonable results than AGCRN, but it is still unable
to generate interpretable embeddings. STGODE considers both spa-
tial and DTW distances with manually designed thresholds, which
obtains competitive performance but is less flexible than SPGCL’s
adaptive adjustment based on spatio-temporal proximity.

4.5 Transferability & Robustness
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Figure 7: Predictive loss curves on the datasets.

One major advantage of our SPGCL over other STGNN models
lies in its transferability and robustness. To validate this argument,
we conduct a transfer learning experiment onHZY data. Specifically,
we pre-train the models on a subgraph sampled from HZY-East and
use the learned models to evaluate their performance on the target
datasets – i.e., the augmented sample subgraph, another subgraph
from HZY-East, and a subgraph from HZY-West. All models are
pre-trained on the sampled subgraph until convergence and then
directly transferred to the testing subgraphs having different node
distributions. The training processes of all models are plotted in
Fig. 7 where the light color lines and solid lines are the original and
smoothed MSE loss, respectively. It shows that SPGCL converges
within 50 epochs on the testing datasets with high stability, val-
idating the superiority of SPGCL in terms of transferability and
robustness. We also find slow convergence of STGCN and ASTGCN
on testing subgraphs, which shows no improvement compared to
the pre-training model. In contrast, AGCRN and SPGCL benefit a
lot from pre-training and converge fast on target subgraphs. Be-
sides, we note that SPGCL achieves the best performance within
50 epochs – significantly faster than other models. Overall, these
results validate the high transferability and model robustness of
SPGCL as it can quickly and stably generalize to different datasets.
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5 CONCLUSION
We presented SPGCL, a general model for spatio-temporal learning
which emphasizes the semantic relationships between monitored
locations, and caters to graph construction when the determinis-
tic adjacency is not available. SPGCL learns spatial and temporal
dependencies simultaneously and maps the pair-wise proximity to
informative relation embeddings. The optimal node adjacency is
obtained via a self-paced paradigm, selecting the new neighbors by
maximizing the mutual information. While the graph approaches
the optimized structure, the mutual information between nodes
and their neighborhoods is also maximized. SPGCL is a general
adjacency construction algorithm and can be explored by different
downstream tasks. The comprehensive experiments conducted on
two spatio-temporal learning tasks verified the effectiveness of our
method. In the future, we attempt to extend SPGCL to other graph
learning tasks where adjacency relations are not provided such
as graph-based text classification, anomaly detection and recom-
mendation. In addition, designing a better message passing mecha-
nism or information aggregation strategy based on the proposed
SPGCL is another direction of our future work.
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